Feeding and diet
African egg-eating snake eating an egg
All snakes are strictly carnivorous, preying on small animals including lizards, frogs, other snakes, small mammals, birds, eggs, fish, snails, worms, and insects. Snakes cannot bite or tear their food to pieces so must swallow their prey whole. The eating habits of a snake are largely influenced by body size; smaller snakes eat smaller prey. Juvenile pythons might start out feeding on lizards or mice and graduate to small deer or antelope as an adult, for example.
The snake’s jaw is a complex structure. Contrary to the popular belief that snakes can dislocate their jaws, they have an extremely flexible lower jaw, the two halves of which are not rigidly attached, and numerous other joints in the skull, which allow the snake to open its mouth wide enough to swallow prey whole, even if it is larger in diameter than the snake itself. For example, the African egg-eating snake has flexible jaws adapted for eating eggs much larger than the diameter of its head. This snake has no teeth, but does have bony protrusions on the inside edge of its spine, which it uses to break the shell when eating eggs
Colubrid Snake
Colubrid Snake
Colubrid Snake
Colubrid Snake
Colubrid Snake
Colubrid Snake
Colubrid Snake
Colubrid Snake
Colubrid Snake
Colubrid Snake
Colubrid Snake
Colubrid Snake
Snakes do not ordinarily prey on humans. Unless startled or injured, most snakes prefer to avoid contact and will not attack humans. With the exception of large constrictors, nonvenomous snakes are not a threat to humans. The bite of a nonvenomous snake is usually harmless; their teeth are not adapted for tearing or inflicting a deep puncture wound, but rather grabbing and holding. Although the possibility of infection and tissue damage is present in the bite of a nonvenomous snake, venomous snakes present far greater hazard to humans.[17]: 209 The World Health Organisation (WHO) lists snakebite under the "other neglected conditions" category. Documented deaths resulting from snake bites are uncommon. Nonfatal bites from venomous snakes may result in the need for amputation of a limb or part thereof. Of the roughly 725 species of venomous snakes worldwide, only 250 are able to kill a human with one bite. Australia averages only one fatal snake bite per year. In India, 250,000 snakebites are recorded in a single year, with as many as 50,000 recorded initial deaths. The WHO estimates that on the order of 100,000 people die each year as a result of snake bites, and around three times as many amputations and other permanent disabilities are caused by snakebites annually. The treatment for a snakebite is as variable as the bite itself. The most common and effective method is through antivenom (or antivenin), a serum made from the venom of the snake. Some antivenom is species-specific (monovalent) while some is made for use with multiple species in mind (polyvalent). In the United States for example, all species of venomous snakes are pit vipers, with the exception of the coral snake. To produce antivenom, a mixture of the venoms of the different species of rattlesnakes, copperheads, and cottonmouths is injected into the body of a horse in ever-increasing dosages until the horse is immunized. Blood is then extracted from the immunized horse. The serum is separated and further purified and freeze-dried. It is reconstituted with sterile water and becomes antivenom. For this reason, people who are allergic to horses are more likely to have an allergic reaction to antivenom. Antivenom for the more dangerous species (such as mambas, taipans, and cobras) is made in a similar manner in India, South Africa, and Australia, although these antivenoms are species-specific.